Jul. 22nd, 2018

galka_il: (Default)
Шон Кэррол «Приспособиться и выжить. (ДНК как летопись эволюции)»
Цветовое зрение:
«Восприятие цвета начинается тогда, когда свет с определенной длиной волны сталкивается со зрительными пигментами в сетчатке глаза. Эти пигменты состоят из белка опсина и небольшой молекулы хромофора, которая у человека является производным витамина A. Чувствительность зрительного пигмента к свету определяется последовательностью белка опсина и его взаимодействием с хромофором. Это взаимодействие обеспечивает тонкую спектральную настройку, в результате которой каждый зрительный пигмент настраивается на свет с определенной длиной волны. У человека есть три вида зрительных пигментов, чувствительных к коротким, средним и длинным световым волнам. Их называют коротковолновыми, средневолновыми и длинноволновыми опсинами (или опсинами SWS, MWS и LWS). Опсин SWS настроен на длину волны 417 нм (синий цвет), опсин MWS — на 530 нм (зеленый цвет), а опсин LWS — на 560 нм (красный цвет), и вместе они обеспечивают нам цветовое зрение. Четвертый пигмент, родопсин (497 нм), используется в основном при слабом освещении. Свет с длиной волны меньше 400 нм (ультрафиолетовая область) или больше 700 нм (инфракрасная область) невидим для человека, но, как я расскажу позднее, многие животные могут видеть в ультрафиолетовом диапазоне спектра
Все человекообразные и другие обезьяны Старого Света (африканские и азиатские) обладают трихроматическим цветовым зрением и имеют три гена опсинов, тогда как американские обезьяны, а также грызуны и другие млекопитающие обычно обладают дихроматическим зрением и имеют два гена опсинов. Полноценное цветовое зрение возникло у предка приматов Старого Света после разделения линий, обитающих в Старом и Новом Свете. Кроме того, поскольку приматы Старого Света имеют третий зрительный пигмент колбочек, соответствующий ген опсина также должен был появиться после этого разделения. Это говорит о том, что наша с вами способность воспринимать цвета появилась у нашего древнего предка в Старом Свете, а не возникла независимо в ходе более поздней эволюции гоминидов.

Наличие у других млекопитающих (белок, кошек, собак и др.) лишь двух опсинов и дихроматического зрения означает, что общий предшественник всех млекопитающих обладал дихроматическим зрением. Но, прежде чем мы сделаем вывод о том, что полноценное цветовое зрение приматов является их «уникальным усовершенствованием», нужно исследовать зрение других позвоночных. Тут-то и возникает загвоздка. Прекрасным цветовым зрением обладают птицы, а также рептилии и многие рыбы, в частности золотые рыбки. У этих животных обнаружено не менее четырех генов опсинов. А у некоторых более примитивных позвоночных, таких как миноги, найдено пять генов опсинов. Это означает, что цветовое зрение возникло на очень ранних этапах эволюции позвоночных животных — до их разделения на челюстных и бесчелюстных. Поэтому, если рассматривать эволюционное древо позвоночных животных в целом, выясняется, что не относящиеся к приматам млекопитающие в какой-то момент потеряли гены опсинов и свою способность цветового зрения. Из картины распределения этих признаков у позвоночных можно сделать вывод, что в ходе эволюции способность к цветовому зрению сначала была широко распространена, но потом у предков млекопитающих она исчезла и возродилась вновь у предков приматов Старого Света.

Возможно, вы удивитесь: если цветовое зрение играет такую важную роль, как же оно могло исчезнуть? Наиболее правдоподобное объяснение связано с ночным образом жизни млекопитающих. Первые млекопитающие были мелкими животными и вели скрытный, ночной образ жизни в экосистемах, хозяевами которых были более крупные животные, такие как динозавры. При ночном образе жизни не нужно различать цвета, а нужно иметь возможность видеть в полумраке и в темноте…Крысы, мыши, белки, кролики, козы и другие млекопитающие имеют единственный MWS/LWS-опсин с максимумом поглощения при длине волны 510–550 нм. Этот опсин кодируется единственным геном. Напротив, человек обладает двумя опсинами (MWS и LWS), которые кодируются двумя генами на X-хромосоме, расположенными в тандеме «голова к хвосту». Последовательности ДНК этих двух опсинов совпадают на 98 %. Столь большое сходство и ближайшее соседство этих генов говорит о том, что они возникли в результате удвоения единственного гена опсина MWS/LWS у какого-то примата-предка. Удвоение генов — довольно распространенная форма изменения последовательности ДНК; многие наши гены в ходе эволюции приобрели по несколько копий. Рост числа копий гена увеличивает количество информации, на которую может влиять естественный отбор, и достаточно часто функции этих копий со временем начинают различаться. Именно это произошло с двумя олеинами на X-хромосоме.
Наша пара опсинов, как и опсины других приматов с три-хроматическим зрением, в наибольшей степени стимулируется светом с длиной волны 530 нм (зеленый) и 560 нм (красный) — это их максимумы поглощения. Изучение функциональных свойств опсинов показало, что их спектр поглощения достаточно легко изменить путем замены определенных аминокислотных остатков. То, что у всех приматов с трихроматическим зрением максимумы поглощения белков сохранились на длине волны 530 и 560 нм, означает, что это свойство белков поддерживается естественным отбором.
Последовательности зеленого и красного пигментов различаются всего 15 аминокислотными остатками. Заменяя одну аминокислоту на другую и анализируя результат, ученые смогли установить, какие именно аминокислотные остатки отвечают за особые свойства каждого из пигментов…
Исследования показывают, что после удвоения гена пигмента MWS/LWS у нашего далекого предка две образовавшиеся копии стали функционировать по-разному (одна настроилась на восприятие света с диной волны 530 нм, другая — 560 нм) главным образом в результате изменения аминокислотных остатков в этих трех ключевых позициях…»
У прочих четвероногих, включая обезьян Нового Света, два опсина – для синего и желтого цвета."
Опсин человека настроен так, чтобы поглощать свет с максимальной длиной волны 500 (фиолетовый).
В глубине моря нужно другое зрение, т.к. там превалирует синий  свет. В результате, у глубоководных жителей происходит смещение максимально длины волны в сторону синего света. У глубоководного угря 482 нм, а у его родственника, пресноводного угря, 502.
У птиц 4 опсина, часть птиц видят ультрафиолет.

galka_il: (Default)
Шон Кэррол «Приспособиться и выжить. (ДНК как летопись эволюции)»
Шон Б. Кэрролл (англ. Sean B. Carroll) — профессор молекулярной биологии, генетики и медицинской генетики в Висконсинском университете
Очень интересная книга о генах и эволюции.
«Теперь мы знаем, что каждый шаг эволюции учтен и записан в ДНК. Каждое изменение или новый признак — от антифриза белокровных антарктических рыб до изумительных оттенков альпийских цветов и наших крупных, наполненных мозгом черепов — является результатом одного или многих (иногда очень, очень многих) постепенных изменений в ДНК, которые мы теперь имеем возможность обнаружить. Некоторые из этих изменений малюсенькие — всего лишь замена одного основания ДНК в одном гене. Другие гораздо серьезнее и связаны с появлением (или потерей) целых генов или групп генов.
Мы получили возможность проследить за этими изменениями благодаря недавнему прорыву в наших знаниях о генах различных видов организмов и их геномах (полном наборе ДНК организма). Всего лишь несколько лет назад ученые расшифровали простые геномы бактерий и дрожжей, и вот уже одно за другим стремительно появляются сообщения о прочтении геномов таких сложных организмов, как шимпанзе, собаки, киты и различные растения. Уникальная последовательность ДНК каждого организма содержит полную информацию о нем нынешнем. Это перечень всех генов, необходимых для его создания и функционирования.
Но текст ДНК — это еще и окошко в близкое и далекое прошлое. Определение генома первого представителя какой-либо группы организмов прокладывает путь для гораздо более быстрого анализа геномов его родственников. Сравнивая гены и геномы организмов с разной степенью родства, мы можем обнаружить важные различия и найти следы естественного отбора. Кому-то эта картина поубавит спеси, а кого-то восхитит. Мы можем вернуться на несколько миллионов лет назад и проследить за эволюционными изменениям в той ветви, что ведет к нам от общего предка с шимпанзе, нашим ближайшим родственником на планете. Мы можем вернуться на 100 млн лет назад и увидеть точку, в которой появилось различие между сумчатыми и плацентарными млекопитающими. Мы можем бросить взгляд в еще более давнее прошлое, когда животных еще не существовало, и найти сотни генов простейших одноклеточных организмов, которые появились более 2 млрд лет назад, но все еще выполняют ту же самую работу для нас с вами.»
Page generated Feb. 11th, 2026 01:40 am
Powered by Dreamwidth Studios